
Optimal Allocation: Design 

without Transfers



Elementary school choice in Boston (2012)

 Students rank any number 

of programs within their 

zone + walk-zone.

 Schools priorities over 

students:

1. Continuing

2. Siblings

3. Walk-zone (applies to only 

50% of seats)

4. lottery number Main entry grade K2:

• 77 schools

• 123 programs

• ≈20-60 seats/program
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Assigning students to schools

Student-proposing Deferred Acceptance (Gale-
Shapley 62):

While no more students apply

 Each unmatched student applies to the next school on her list. 

 Any school that has more proposals than capacity rejects its 
least preferred applicants

In Boston preferences of schools over students are determined by 
priorities and lottery numbers
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Criticisms of choice plan

Unpredictable

Unsustainable 

Transportation Costs

Scatters 

Neighborhoods
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Fundamental tradeoffs

 Limit busing.

 Efficiency: Match families with what is best for them.

 Equity: Families have reasonable chances regardless of 

home location or socio-economic status.

 Other considerations:

 Predictability

 Simplicity

 Community cohesion
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Outline

 A generalized model, applicable in more settings.

 Characterizations of “good” mechanisms in large markets

 Characterizations for cardinal and ordinal mechanisms

 Apply the theory to Boston school choice (from large to 

finite)
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Abstracting key issue from School Choice 

Example
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 Limited resources.

 Private information.

 Balancing efficiency, equity, and system costs.

 Normally use auctions or queues. But money or costly 

signals cannot be used here.

 Other examples:

 Course allocation.

 Lotteries for on-campus housing.

 Internal allocations of tasks in a company.



Large market model

 Finite set 𝑇 of agents types.

 Mass 𝑛𝑡 of agents of type 𝑡 ∈ 𝑇.

 Finite set 𝑆 of services.  Service 𝑠 ∈ 𝑆 has capacity 𝑚𝑠.

 Each agent must be assigned 1 service.  

 Social planner needs to allocate services to optimize a public 
objective without the ability to differentiate agents via requiring 
monetary payments or costly effort.

|𝑛𝑡| 𝑚𝑠

… …

𝑡 𝑠

…

𝑢𝑖𝑠 ∼ 𝐹𝑡(𝑖)

Private 

utility of 

agent 𝑖

Common 

knowledge prior

(regularity conditions: 

continuous and full 

relative support)
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Two types of mechanisms

 Cardinal (unrestricted)

 Ordinal:

 Can only elicit preference rankings, but not intensities.  i.e. 

service a > service c > service b.
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Cardinal interim allocation rule

 An interim allocation rule for type 𝑡: maps reported utilities of 

an agent of type 𝑡 to assignment probabilities

𝑥𝑡: U → Δ

 Incentive Compatibility (IC):  

 𝑥𝑡(𝒖) maximizes expected utility 𝑣 𝑢′ = 𝒖 ⋅ 𝑥𝑡(𝒖′)

 Pareto efficient within type:

 Does not exist 𝑥𝑡′ with same average allocation as 𝑥𝑡 but 

strictly Pareto improves 𝑥𝑡.

 “Valid”: both IC and Pareto efficient within type.

Utility space

Feasible 

assignment 

probabilities
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Problem formulation
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 Given utility priors 𝐹𝑡 for each type.

 Max𝑊 𝑥

 Can encompass social planner’s balancing of welfare, equity, 

system costs, and distributional preferences.

 Subject to 

 𝑥𝑡 valid (incentive compatible and Pareto efficient within type)

 System costs or distributional constraints.



Characterization of valid allocation rules

Theorem:  Let F be continuous and with full relative support 

for all types.  Every valid allocation rule 𝑥 can be supported as a 

Competitive Equilibrium from Equal Incomes (CEEI) with some 

price vector  𝑎 ∈ 0,∞ 𝑆 .

Interpretation: each agent has 

one unit of budget and can 

purchase any probabilistic  

assignment that does not exceeds 

the budget.
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Optimization – only variables 

are virtual prices



Proof idea
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Step 1:  An allocation rule is incentive compatible if and only if there 

exists a closed convex set 𝑋 such that 𝑥 𝑢 ∈ argmax𝑦∈𝑋𝑢 ⋅ 𝑦



Proof idea
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Step 2: Let 𝑋 be the corresponding convex set for the allocation 

rule 𝑥. Enough to show that there exists a unique supporting 

hyperplane to 𝑋 that intersects the interior of Δ.

𝑋

(1,0,0)

(0,1,0) (0,0,1)

price vector



Proof idea
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Step 2: Let 𝑋 be the corresponding convex set for the allocation 

rule 𝑥. Enough to show that there exists a unique supporting 

hyperplane to 𝑋 that intersects the interior of Δ.

More than one supporting 

hyperplane contradicts Pareto-

efficiency



Ordinal interim allocation rule

 Ordinal interim allocation rule for type 𝑡: maps ranking report 
of an agent of type 𝑡 to assignment probabilities

𝑥𝑡: 𝚷 → Δ

 Incentive Compatibility (IC):  
 𝑥𝑡(𝜋) maximizes expected utility 𝑣 𝜋′ = 𝒖 ⋅ 𝑥𝑡(𝜋′)

 Ordinal efficient within type:

 Does not exist 𝑥𝑡′ with same average allocation as 𝑥𝑡 but 
strictly Pareto improves in terms of first order stochastic 
dominance.

 “Valid”: both IC and Ordinal efficient within type.

Permutations 

of 𝑺.

Feasible 

assignment 

probabilities

17



Characterization of valid allocation rules

Definition: Ordinal interim allocation rule 𝑥: Π → Δ is lottery-

plus-cutoff if there exists cutoffs 𝑎𝑠 ∈ [0,1] such that 

𝑥𝜋 𝑘 𝜋 = max𝑗=1
𝑘 𝑎𝜋(𝑗) −max𝑗=1

𝑘−1𝑎𝜋(𝑗).

Theorem:  

Every valid ordinal interim 

allocation rule is lottery-plus-

cutoff.

Interpretation: agents have lottery 

numbers distributed Uniform(0,1). 

Can choose services 𝑠 for which they 

do not exceed the cutoff 𝑎𝑠. 
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Proof sketch
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Lemma:  An allocation rule 𝑥 𝜋 is incentive compatible if and only if 

there exists a monotone submodular function 𝑓: 2 𝑆 → [0,1] s.t.

𝑥𝜋 𝑘 (𝜋) = 𝑓({𝜋(1), … , 𝜋(𝑘)}) − 𝑓({𝜋 1 ,… , 𝜋 𝑘 − 1 })



Lemma idea
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𝑓 𝑀 =

𝑗=1

|𝑀|

𝑥𝜋 𝑗 𝜋

If x is incentive compatible, then for any 𝑀 ⊆ 𝑆 one can define 

,    where {𝜋 1 ,…𝜋 𝑀 } = 𝑀

𝑓 is monotone and submodular



Lemma idea (cont.):
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If x is defined by 𝑥𝜋(𝑘) (𝜋) = 𝑓({𝜋(1), … , 𝜋(𝑘)}) − 𝑓({𝜋(1), … , 𝜋(𝑘 − 1)}

with monotone submodular f, the range of x is the vertex set of the 

base polytope of the polymatroid:



𝑠∈𝑀

𝑥𝑠 ≤ 𝑓 𝑀 ∀𝑀 ⊆ 𝑆



𝑠∈𝑀

𝑥𝑠 = 1

𝑥 ≥ 0

Greedy optimization with objective  𝑢 ⋅ 𝑥 (assuming 𝑢1 ≥
𝑢2 ≥ ⋯ ≥ 𝑢|𝑆|) leads to set x’s as we defined.

 thus x is incentive compatible 



Exchange lemma:
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Let 𝑓 be a monotone submodular function corresponding to an 

incentive compatible allocation rule 𝑥. 

If 𝑥 is Pareto efficient, then for every 𝑀1, 𝑀2 ⊆ 𝑆

𝑓 𝑀1 ∪𝑀2 = max{𝑓 𝑀1 , 𝑓 𝑀2 }



Insights from ordinal mechanisms

 A valid mechanism is equivalent to assign a menu with all 

services with larger cutoffs than the lottery number: 

randomized menu with nested menus

 Only variables in the optimization 

problem are cutoffs
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Solving the optimization problem

 Suppose public objective is a linear combination of utilitarian 
and max-min welfare (or any other linear objective)

𝑊 = 𝛼σ𝑡𝑤𝑡𝑣𝑡 + 1 − 𝛼 min
𝑡
𝑣𝑡

 Linear costs: vector of cost 𝒄𝑡𝑠 for allocating an agent of type 𝑡 to 
service 𝑠; budget 𝑩 on expected costs. σ𝑡 𝑛𝑡 𝑥𝑡𝑠𝒄𝑡𝑠 ≤ 𝑩

utilitarian welfare max-min welfare

parameter arbitrary 

weights
expected utility 

of type t
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Optimization with randomized menus

Max𝑊 = 𝛼

𝑡,𝑀

𝑤𝑡𝑣𝑡 𝑀 𝑧𝑡 𝑀 + 1 − 𝛼 𝑚𝑖𝑛
𝑡



𝑀

𝑣𝑡 𝑀 𝑧𝑡 𝑀

s.t.

Assign a menu             σ𝑀 𝑧𝑡 𝑀 = 1 ∀𝑡

Capacity σ𝑀 𝑛𝑡𝑝𝑡 𝑠,𝑀 𝑧𝑡 𝑀 ≤ 𝑚𝑠 ∀𝑠

Budget σ𝑠,𝑡,𝑀 𝑛𝑡𝑝𝑡 𝑠,𝑀 𝑐𝑡𝑠𝑧𝑡 𝑀 ≤ 𝐶

𝒛𝒕(𝑴) ≥ 𝟎,  ∀𝒕,𝑴 ⊆ 𝑺
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Probability  assigning 

menu M to type t

Probability  agent of 

type t chooses 

service s from M

Too many variables!



Optimization with randomized menus
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Utility prior 𝐹𝑡 is “logit”: if 𝑢𝑖𝑠 = 𝑎𝑡𝑠 + 𝑏𝑡𝜖𝑖𝑠 𝜖𝑖𝑠 i.i.d. standard Gumbel

Theorem: Under logit utility priors the optimal solution can be found 

in polynomial time.



Applying machinery to school choice

 Solve the optimal mechanism for the large market

 Translate the cutoffs from the opt mechanism to a finite 

market mechanism:

construct priorities for each school and run 

Deferred Acceptance

 Under same budget for total miles bused, computed 

optimal for:

 𝛼 = 1: utilitarian welfare

 𝛼 = 0: max-min welfare

 𝛼 = 0.5: Equal weighting of above
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Performance of opt under various 𝛼’𝑠
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𝛼 = 1 𝛼 = 0.5 𝛼 = 0

Average 

expected

utility

7.78 7.66 7.39

Expected  

utility for 

worse off 

type

2.52 7.39 7.39

Averages over 10,000 independent simulations



Elementary school choice in Boston (2012)

 Students rank any number of 
programs within their zone + 
walk-zone.

 Schools priorities students:
1. Continuing

2. Siblings

3. Walk-zone (applies to only 
50% of seats)

4. lottery number

 Gale-Shapley’s Deferred 
Acceptance Algorithm:
1. Student applies to top 

choice.

2. Program accepts if space 
available; otherwise bump 
out least priority student.

3. Remove choice from 
bumped student; iterate.

Main entry grade K2:

• 77 schools

• 123 programs

• ≈20-60 seats/program
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Data
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 For each student, (of approximately 4000 students), have

 Home location (14 neighborhoods, 868 geocodes)

 Ranked list of preferences: 

 1st choice, 2nd choice, 3rd choice, …

 For each school program, have

 Location, test scores, demographics, program type, …



Modeling demand

 Multinomial logit:

𝑢𝑡𝑠 = 𝑄𝑠 − 𝐷𝑡𝑠 +𝜔 ⋅ 𝑾𝑡𝑠 + 𝛽𝜖𝑡𝑠

 Fit 𝑄,𝜔, 𝛽 from micro choice data using MLE.

𝑄𝑠: 0-6.29 (additional utility in travelling distance)

𝜔: 0.86 (additional utility for walk zone)

𝛽: 1.88 (standard deviation of taste shock)

utility quality distance
Walk 

indicator
“idiosyncratic taste”

~Gumbel(0,𝛽)
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Proposed Solution

 “Home Based A (Baseline)”: Each family gets union of 

walk-zone, closest 2 top 25% schools, closest 4 top 50% 

schools, closest 6 top 75% schools, closest 3 “capacity 

schools.”

 Logic:

 Offer “enough” schools at various thresholds.

 Compensate families in “bad areas” with more choices.

 Dynamically adapts to changes in quality. 

 Unlike rigid zone maps.
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Evaluation of plans
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Minimum Baseline Opt Opt A

Miles busing 

per student
0.35 0.64 0.71 0.63

Average exp 

utility
6.31 6.95 7.62 7.49

Exp utility for 

worse off type
2.86 4.53 7.05 7.02

% getting top 

choice
66 64 80 79

% getting 3rd

choice 88 85 94 93

Averages over 10,000 independent simulations



Comparing Choice Menus for a 

Neighborhood Near “Higher Quality” Schools

Baseline Opt A
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Comparing choice menus for a 

Neighborhood near “Lower Quality” Schools

Baseline Opt A
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Optimal plan has larger catchment area for 

less popular schools
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Summary of Insights

 Possible to simultaneously achieve high efficiency, 

equity, predictability, while staying within busing 

budget.

 “Optimal plan” more aggressive than Baseline  

compensating “lower quality” of choice with higher 

quantity.

 Logic: families would only choose far away “lower quality” 

schools if they have a good reason, so offering to bus them to 

these schools is win/win.
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Question: Can we improve community 

cohesion without affecting choice? 
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 “without affecting choice”: same application process, 

same choices, same assignment probabilities.

 “community cohesion”: conditional on being assigned, 

how many others from my community can I expect 

to be co-assigned with? Average this across students.

 Proportional to # of same-community-pairs assigned 

together.

Ashlagi and Shi 2013: Improving community cohesion in school choice,  



Characterization of valid allocation rules

Every valid ordinal interim allocation rule is lottery-plus-cutoff.
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Flexibility:

a. lotteries (can correlate) 

b. priorities



Maximize community cohesion

 𝑧𝑖𝑠: random indicator for 𝑖 being assigned to 𝑠.

 𝑐(𝑖): community of student 𝑖.

Max σ𝑠𝐸[σ𝑐 𝑖 =𝑐(𝑖′) 𝑧𝑖𝑠𝑧𝑖′𝑠] (community cohesion)

s.t. maintaining 𝑝𝑖𝑠 = 𝐸[𝑧𝑖𝑠] for all 𝑖, 𝑠

𝑧 is feasible random assignment.

 Heuristic does well in simulation. 
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C. Significant 

gain from 

correlated 

lottery

When can cohesion be improved? 
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Cohesion gain from 

correlated lottery

Within-community 

heterogeneity

Between-

community 

heterogeneity

A. Cohesion 

already high

B. No hope for 

high cohesion



No Lottery to Correlate for Continuing 

Students and Siblings
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K1 K2

% of students
% assigned 
top choice % students

% assigned 
top choice

Continuing students 6% 92% 47% 95%
Non-continuing 
siblings 26% 80% 12% 79%

New families 68% 24% 41% 29%

So can only hope to significantly improve cohesion for new 

families.



Impact of Lottery Correlation
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Grade Student Type Baseline Correlated Upperbound
Gain in 
Cohesion

K1 All 1.35 2.11 2.70 0.75

Continuing 1.30 1.32 1.38 0.02

Non-continuing siblings 1.35 1.43 1.56 0.08

New families 1.36 2.44 3.26 1.08

K2 All 2.48 2.89 3.39 0.42

Continuing 2.26 2.27 2.30 0.01

Non-continuing siblings 2.91 3.01 3.23 0.10

New families 2.61 3.58 4.69 0.97

For new families, 79% cohesion gain over baseline for K1

and 34% for K2.  Increase # of neighbors by ≈ 1.



Conclusion

44

 Incorporate prior information into assignment problems 

 Characterization of  ordinal and cardinal incentive 

compatible Pareto optimal (within type) mechanisms in 

large markets

 Efficient computation of the ordinal mechanism in an 

relevant empirical environment 

 Engineering approach for implementing in finite markets

 Open question: solve the cardinal mechanism for 

“realistic” preferences



SFUSD 2018 Board Resolution

45

 2018 Board Resolution (link):

 THEREFORE BE IT RESOLVED: The SFUSD will initiate a process to develop a new student 

assignment system, focusing on elementary schools, which will be predicated on greater 

predictability, transparency, accessibility to neighborhood options, equity, a strong 

commitment to integrated schools; and

 FURTHER BE IT RESOLVED: In developing the policy goals for a revised student assignment 

system, staff will consider:  Access to a high quality school; and Access to a diverse school; 

and Access to a school where sibling(s) attend; and

 BE IT FURTHER RESOLVED: In developing a revised student assignment policy, staff will develop 

recommendations that will strive to: Serve the needs of historically underserved students; 

and Facilitate access to an elementary school within a reasonable geographic distance and 

accessible to transit; and ● Offer a predictable, transparent and accessible student 

assignment system.

 Policy Goals: Diversity (and integration), Predictability, Proximity, Equity of 

Access

https://go.boarddocs.com/ca/sfusd/Board.nsf/files/BFYV487EDE6F/$file/Developing%20a%20Community%20Based%20Student%20Assignment%20System_Approved%20Dec%2011%202018.pdf


Student Assignment in SF
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 Residential segregation: SF history of residential segregation

 Redlining

 1971: Horseshoe plan 

 1982-2002 Open Enrollment

1937

Redlining map

1971



Need for a New Student Assignment System in San Francisco 
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Problem:

Assigning students 
to public schools in 
San Francisco 
Unified School 
District (SFUSD)

Image source: http://racialdotmap.demographics.coopercenter.org/

Choice: Disentangle neighborhood and school segregation

Dec 2018: SFUSD Board of 

Education initiated a redesign of 

elementary student assignment 

Goals: Diversity, Predictability, 

Proximity, Equity of Access



School Choice in Practice
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 Deferred Acceptance (DA): 

NYC, Boston, Washington D.C., 

Denver, Seattle…

 Top Trading Cycles/ DA:

San Francisco, New Orleans

Since 2012 Home-Based Plan [Shi 12]



School Choice in San Francisco: 2002-current
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Elementary schools

~5,000 students,  ~70 programs, ~50 

schools

Families rank any number of programs

Students priorities at the schools:

1. Siblings

2. CTIP 

3. Neighborhood

4. lottery number

Algorithm (2002-2018):

DA (Gale Shapley) followed by “trading cycles”

2019-present:

DA (Gale Shapley)



SFUSD Student Assignment: Goals and Challenges

50

Image source: http://racialdotmap.demographics.coopercenter.org/

 Dec 2018: SFUSD Board of Education initiated a redesign 

of elementary school student assignment 

 Goals: Predictability, Proximity, 

Diversity, Equity of Access

 Challenges 

 SF residential segregation patterns 

(ethnic and SES)

 Many programs and types of programs 

 Opt out to private/charter schools



SFUSD Student Assignment: Policies in Practice 

Idea 1: Neighborhood 

Assignment
• Students attend neighborhood school

• Problem: Racial + socioeconomic 

segregation of neighborhoods
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Image source:  http://racialdotmap.demographics.coopercenter.org/

Idea 2: District-Wide Choice
• Students choose any schools, run DA or TTC

• Problems: Unpredictable and opaque, 

strategic issues, did not help with diversity

Schools with highest % 

historically underserved 

minorities (AALPI)

Schools with highest % 

students with socio-

economic need (eligible for 

free or reduced-price lunch)



District Policy Concepts
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District Policy Concepts: Community Feedback
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Popular only with high-

income families & 

families in west SF 

Popular amongst 

almost every 

demographic group

Unpopular due to concerns about 

feasibility and replicating district 

problems in each zone

Community engagement meetings in Fall 2020
• Having some choice was important to most families, particularly AALPI and low-income 

families

• Families will find it easier to give feedback after having specific zone boundaries

General skepticism 

from AALPI and 

low-income 

families



List Lengths

List length

Fraction 
of 
students 
with list 
of given 
length



Discussion
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