
Optimal Allocation: Design 

without Transfers



Elementary school choice in Boston (2012)

 Students rank any number 

of programs within their 

zone + walk-zone.

 Schools priorities over 

students:

1. Continuing

2. Siblings

3. Walk-zone (applies to only 

50% of seats)

4. lottery number Main entry grade K2:

• 77 schools

• 123 programs

• ≈20-60 seats/program
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Assigning students to schools

Student-proposing Deferred Acceptance (Gale-
Shapley 62):

While no more students apply

 Each unmatched student applies to the next school on her list. 

 Any school that has more proposals than capacity rejects its 
least preferred applicants

In Boston preferences of schools over students are determined by 
priorities and lottery numbers
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Criticisms of choice plan

Unpredictable

Unsustainable 

Transportation Costs

Scatters 

Neighborhoods
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Fundamental tradeoffs

 Limit busing.

 Efficiency: Match families with what is best for them.

 Equity: Families have reasonable chances regardless of 

home location or socio-economic status.

 Other considerations:

 Predictability

 Simplicity

 Community cohesion

5



Outline

 A generalized model, applicable in more settings.

 Characterizations of “good” mechanisms in large markets

 Characterizations for cardinal and ordinal mechanisms

 Apply the theory to Boston school choice (from large to 

finite)
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Abstracting key issue from School Choice 

Example
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 Limited resources.

 Private information.

 Balancing efficiency, equity, and system costs.

 Normally use auctions or queues. But money or costly 

signals cannot be used here.

 Other examples:

 Course allocation.

 Lotteries for on-campus housing.

 Internal allocations of tasks in a company.



Large market model

 Finite set 𝑇 of agents types.

 Mass 𝑛𝑡 of agents of type 𝑡 ∈ 𝑇.

 Finite set 𝑆 of services.  Service 𝑠 ∈ 𝑆 has capacity 𝑚𝑠.

 Each agent must be assigned 1 service.  

 Social planner needs to allocate services to optimize a public 
objective without the ability to differentiate agents via requiring 
monetary payments or costly effort.

|𝑛𝑡| 𝑚𝑠

… …

𝑡 𝑠

…

𝑢𝑖𝑠 ∼ 𝐹𝑡(𝑖)

Private 

utility of 

agent 𝑖

Common 

knowledge prior

(regularity conditions: 

continuous and full 

relative support)
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Two types of mechanisms

 Cardinal (unrestricted)

 Ordinal:

 Can only elicit preference rankings, but not intensities.  i.e. 

service a > service c > service b.
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Cardinal interim allocation rule

 An interim allocation rule for type 𝑡: maps reported utilities of 

an agent of type 𝑡 to assignment probabilities

𝑥𝑡: U → Δ

 Incentive Compatibility (IC):  

 𝑥𝑡(𝒖) maximizes expected utility 𝑣 𝑢′ = 𝒖 ⋅ 𝑥𝑡(𝒖′)

 Pareto efficient within type:

 Does not exist 𝑥𝑡′ with same average allocation as 𝑥𝑡 but 

strictly Pareto improves 𝑥𝑡.

 “Valid”: both IC and Pareto efficient within type.

Utility space

Feasible 

assignment 

probabilities
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Problem formulation
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 Given utility priors 𝐹𝑡 for each type.

 Max𝑊 𝑥

 Can encompass social planner’s balancing of welfare, equity, 

system costs, and distributional preferences.

 Subject to 

 𝑥𝑡 valid (incentive compatible and Pareto efficient within type)

 System costs or distributional constraints.



Characterization of valid allocation rules

Theorem:  Let F be continuous and with full relative support 

for all types.  Every valid allocation rule 𝑥 can be supported as a 

Competitive Equilibrium from Equal Incomes (CEEI) with some 

price vector  𝑎 ∈ 0,∞ 𝑆 .

Interpretation: each agent has 

one unit of budget and can 

purchase any probabilistic  

assignment that does not exceeds 

the budget.
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Optimization – only variables 

are virtual prices



Proof idea
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Step 1:  An allocation rule is incentive compatible if and only if there 

exists a closed convex set 𝑋 such that 𝑥 𝑢 ∈ argmax𝑦∈𝑋𝑢 ⋅ 𝑦



Proof idea
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Step 2: Let 𝑋 be the corresponding convex set for the allocation 

rule 𝑥. Enough to show that there exists a unique supporting 

hyperplane to 𝑋 that intersects the interior of Δ.

𝑋

(1,0,0)

(0,1,0) (0,0,1)

price vector



Proof idea
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Step 2: Let 𝑋 be the corresponding convex set for the allocation 

rule 𝑥. Enough to show that there exists a unique supporting 

hyperplane to 𝑋 that intersects the interior of Δ.

More than one supporting 

hyperplane contradicts Pareto-

efficiency



Ordinal interim allocation rule

 Ordinal interim allocation rule for type 𝑡: maps ranking report 
of an agent of type 𝑡 to assignment probabilities

𝑥𝑡: 𝚷 → Δ

 Incentive Compatibility (IC):  
 𝑥𝑡(𝜋) maximizes expected utility 𝑣 𝜋′ = 𝒖 ⋅ 𝑥𝑡(𝜋′)

 Ordinal efficient within type:

 Does not exist 𝑥𝑡′ with same average allocation as 𝑥𝑡 but 
strictly Pareto improves in terms of first order stochastic 
dominance.

 “Valid”: both IC and Ordinal efficient within type.

Permutations 

of 𝑺.

Feasible 

assignment 

probabilities
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Characterization of valid allocation rules

Definition: Ordinal interim allocation rule 𝑥: Π → Δ is lottery-

plus-cutoff if there exists cutoffs 𝑎𝑠 ∈ [0,1] such that 

𝑥𝜋 𝑘 𝜋 = max𝑗=1
𝑘 𝑎𝜋(𝑗) −max𝑗=1

𝑘−1𝑎𝜋(𝑗).

Theorem:  

Every valid ordinal interim 

allocation rule is lottery-plus-

cutoff.

Interpretation: agents have lottery 

numbers distributed Uniform(0,1). 

Can choose services 𝑠 for which they 

do not exceed the cutoff 𝑎𝑠. 
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Proof sketch
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Lemma:  An allocation rule 𝑥 𝜋 is incentive compatible if and only if 

there exists a monotone submodular function 𝑓: 2 𝑆 → [0,1] s.t.

𝑥𝜋 𝑘 (𝜋) = 𝑓({𝜋(1), … , 𝜋(𝑘)}) − 𝑓({𝜋 1 ,… , 𝜋 𝑘 − 1 })



Lemma idea
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𝑓 𝑀 =෍

𝑗=1

|𝑀|

𝑥𝜋 𝑗 𝜋

If x is incentive compatible, then for any 𝑀 ⊆ 𝑆 one can define 

,    where {𝜋 1 ,…𝜋 𝑀 } = 𝑀

𝑓 is monotone and submodular



Lemma idea (cont.):
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If x is defined by 𝑥𝜋(𝑘) (𝜋) = 𝑓({𝜋(1), … , 𝜋(𝑘)}) − 𝑓({𝜋(1), … , 𝜋(𝑘 − 1)}

with monotone submodular f, the range of x is the vertex set of the 

base polytope of the polymatroid:

෍

𝑠∈𝑀

𝑥𝑠 ≤ 𝑓 𝑀 ∀𝑀 ⊆ 𝑆

෍

𝑠∈𝑀

𝑥𝑠 = 1

𝑥 ≥ 0

Greedy optimization with objective  𝑢 ⋅ 𝑥 (assuming 𝑢1 ≥
𝑢2 ≥ ⋯ ≥ 𝑢|𝑆|) leads to set x’s as we defined.

 thus x is incentive compatible 



Exchange lemma:
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Let 𝑓 be a monotone submodular function corresponding to an 

incentive compatible allocation rule 𝑥. 

If 𝑥 is Pareto efficient, then for every 𝑀1, 𝑀2 ⊆ 𝑆

𝑓 𝑀1 ∪𝑀2 = max{𝑓 𝑀1 , 𝑓 𝑀2 }



Insights from ordinal mechanisms

 A valid mechanism is equivalent to assign a menu with all 

services with larger cutoffs than the lottery number: 

randomized menu with nested menus

 Only variables in the optimization 

problem are cutoffs
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Solving the optimization problem

 Suppose public objective is a linear combination of utilitarian 
and max-min welfare (or any other linear objective)

𝑊 = 𝛼σ𝑡𝑤𝑡𝑣𝑡 + 1 − 𝛼 min
𝑡
𝑣𝑡

 Linear costs: vector of cost 𝒄𝑡𝑠 for allocating an agent of type 𝑡 to 
service 𝑠; budget 𝑩 on expected costs. σ𝑡 𝑛𝑡 𝑥𝑡𝑠𝒄𝑡𝑠 ≤ 𝑩

utilitarian welfare max-min welfare

parameter arbitrary 

weights
expected utility 

of type t

24



Optimization with randomized menus

Max𝑊 = 𝛼෍

𝑡,𝑀

𝑤𝑡𝑣𝑡 𝑀 𝑧𝑡 𝑀 + 1 − 𝛼 𝑚𝑖𝑛
𝑡

෍

𝑀

𝑣𝑡 𝑀 𝑧𝑡 𝑀

s.t.

Assign a menu             σ𝑀 𝑧𝑡 𝑀 = 1 ∀𝑡

Capacity σ𝑀 𝑛𝑡𝑝𝑡 𝑠,𝑀 𝑧𝑡 𝑀 ≤ 𝑚𝑠 ∀𝑠

Budget σ𝑠,𝑡,𝑀 𝑛𝑡𝑝𝑡 𝑠,𝑀 𝑐𝑡𝑠𝑧𝑡 𝑀 ≤ 𝐶

𝒛𝒕(𝑴) ≥ 𝟎,  ∀𝒕,𝑴 ⊆ 𝑺
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Probability  assigning 

menu M to type t

Probability  agent of 

type t chooses 

service s from M

Too many variables!



Optimization with randomized menus
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Utility prior 𝐹𝑡 is “logit”: if 𝑢𝑖𝑠 = 𝑎𝑡𝑠 + 𝑏𝑡𝜖𝑖𝑠 𝜖𝑖𝑠 i.i.d. standard Gumbel

Theorem: Under logit utility priors the optimal solution can be found 

in polynomial time.



Applying machinery to school choice

 Solve the optimal mechanism for the large market

 Translate the cutoffs from the opt mechanism to a finite 

market mechanism:

construct priorities for each school and run 

Deferred Acceptance

 Under same budget for total miles bused, computed 

optimal for:

 𝛼 = 1: utilitarian welfare

 𝛼 = 0: max-min welfare

 𝛼 = 0.5: Equal weighting of above
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Performance of opt under various 𝛼’𝑠
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𝛼 = 1 𝛼 = 0.5 𝛼 = 0

Average 

expected

utility

7.78 7.66 7.39

Expected  

utility for 

worse off 

type

2.52 7.39 7.39

Averages over 10,000 independent simulations



Elementary school choice in Boston (2012)

 Students rank any number of 
programs within their zone + 
walk-zone.

 Schools priorities students:
1. Continuing

2. Siblings

3. Walk-zone (applies to only 
50% of seats)

4. lottery number

 Gale-Shapley’s Deferred 
Acceptance Algorithm:
1. Student applies to top 

choice.

2. Program accepts if space 
available; otherwise bump 
out least priority student.

3. Remove choice from 
bumped student; iterate.

Main entry grade K2:

• 77 schools

• 123 programs

• ≈20-60 seats/program
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Data
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 For each student, (of approximately 4000 students), have

 Home location (14 neighborhoods, 868 geocodes)

 Ranked list of preferences: 

 1st choice, 2nd choice, 3rd choice, …

 For each school program, have

 Location, test scores, demographics, program type, …



Modeling demand

 Multinomial logit:

𝑢𝑡𝑠 = 𝑄𝑠 − 𝐷𝑡𝑠 +𝜔 ⋅ 𝑾𝑡𝑠 + 𝛽𝜖𝑡𝑠

 Fit 𝑄,𝜔, 𝛽 from micro choice data using MLE.

𝑄𝑠: 0-6.29 (additional utility in travelling distance)

𝜔: 0.86 (additional utility for walk zone)

𝛽: 1.88 (standard deviation of taste shock)

utility quality distance
Walk 

indicator
“idiosyncratic taste”

~Gumbel(0,𝛽)
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Proposed Solution

 “Home Based A (Baseline)”: Each family gets union of 

walk-zone, closest 2 top 25% schools, closest 4 top 50% 

schools, closest 6 top 75% schools, closest 3 “capacity 

schools.”

 Logic:

 Offer “enough” schools at various thresholds.

 Compensate families in “bad areas” with more choices.

 Dynamically adapts to changes in quality. 

 Unlike rigid zone maps.
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Evaluation of plans
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Minimum Baseline Opt Opt A

Miles busing 

per student
0.35 0.64 0.71 0.63

Average exp 

utility
6.31 6.95 7.62 7.49

Exp utility for 

worse off type
2.86 4.53 7.05 7.02

% getting top 

choice
66 64 80 79

% getting 3rd

choice 88 85 94 93

Averages over 10,000 independent simulations



Comparing Choice Menus for a 

Neighborhood Near “Higher Quality” Schools

Baseline Opt A
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Comparing choice menus for a 

Neighborhood near “Lower Quality” Schools

Baseline Opt A
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Optimal plan has larger catchment area for 

less popular schools
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Summary of Insights

 Possible to simultaneously achieve high efficiency, 

equity, predictability, while staying within busing 

budget.

 “Optimal plan” more aggressive than Baseline  

compensating “lower quality” of choice with higher 

quantity.

 Logic: families would only choose far away “lower quality” 

schools if they have a good reason, so offering to bus them to 

these schools is win/win.
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Question: Can we improve community 

cohesion without affecting choice? 
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 “without affecting choice”: same application process, 

same choices, same assignment probabilities.

 “community cohesion”: conditional on being assigned, 

how many others from my community can I expect 

to be co-assigned with? Average this across students.

 Proportional to # of same-community-pairs assigned 

together.

Ashlagi and Shi 2013: Improving community cohesion in school choice,  



Characterization of valid allocation rules

Every valid ordinal interim allocation rule is lottery-plus-cutoff.
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Flexibility:

a. lotteries (can correlate) 

b. priorities



Maximize community cohesion

 𝑧𝑖𝑠: random indicator for 𝑖 being assigned to 𝑠.

 𝑐(𝑖): community of student 𝑖.

Max σ𝑠𝐸[σ𝑐 𝑖 =𝑐(𝑖′) 𝑧𝑖𝑠𝑧𝑖′𝑠] (community cohesion)

s.t. maintaining 𝑝𝑖𝑠 = 𝐸[𝑧𝑖𝑠] for all 𝑖, 𝑠

𝑧 is feasible random assignment.

 Heuristic does well in simulation. 
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C. Significant 

gain from 

correlated 

lottery

When can cohesion be improved? 
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Cohesion gain from 

correlated lottery

Within-community 

heterogeneity

Between-

community 

heterogeneity

A. Cohesion 

already high

B. No hope for 

high cohesion



No Lottery to Correlate for Continuing 

Students and Siblings
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K1 K2

% of students
% assigned 
top choice % students

% assigned 
top choice

Continuing students 6% 92% 47% 95%
Non-continuing 
siblings 26% 80% 12% 79%

New families 68% 24% 41% 29%

So can only hope to significantly improve cohesion for new 

families.



Impact of Lottery Correlation
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Grade Student Type Baseline Correlated Upperbound
Gain in 
Cohesion

K1 All 1.35 2.11 2.70 0.75

Continuing 1.30 1.32 1.38 0.02

Non-continuing siblings 1.35 1.43 1.56 0.08

New families 1.36 2.44 3.26 1.08

K2 All 2.48 2.89 3.39 0.42

Continuing 2.26 2.27 2.30 0.01

Non-continuing siblings 2.91 3.01 3.23 0.10

New families 2.61 3.58 4.69 0.97

For new families, 79% cohesion gain over baseline for K1

and 34% for K2.  Increase # of neighbors by ≈ 1.



Conclusion
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 Incorporate prior information into assignment problems 

 Characterization of  ordinal and cardinal incentive 

compatible Pareto optimal (within type) mechanisms in 

large markets

 Efficient computation of the ordinal mechanism in an 

relevant empirical environment 

 Engineering approach for implementing in finite markets

 Open question: solve the cardinal mechanism for 

“realistic” preferences



SFUSD 2018 Board Resolution
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 2018 Board Resolution (link):

 THEREFORE BE IT RESOLVED: The SFUSD will initiate a process to develop a new student 

assignment system, focusing on elementary schools, which will be predicated on greater 

predictability, transparency, accessibility to neighborhood options, equity, a strong 

commitment to integrated schools; and

 FURTHER BE IT RESOLVED: In developing the policy goals for a revised student assignment 

system, staff will consider:  Access to a high quality school; and Access to a diverse school; 

and Access to a school where sibling(s) attend; and

 BE IT FURTHER RESOLVED: In developing a revised student assignment policy, staff will develop 

recommendations that will strive to: Serve the needs of historically underserved students; 

and Facilitate access to an elementary school within a reasonable geographic distance and 

accessible to transit; and ● Offer a predictable, transparent and accessible student 

assignment system.

 Policy Goals: Diversity (and integration), Predictability, Proximity, Equity of 

Access

https://go.boarddocs.com/ca/sfusd/Board.nsf/files/BFYV487EDE6F/$file/Developing%20a%20Community%20Based%20Student%20Assignment%20System_Approved%20Dec%2011%202018.pdf


Student Assignment in SF
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 Residential segregation: SF history of residential segregation

 Redlining

 1971: Horseshoe plan 

 1982-2002 Open Enrollment

1937

Redlining map

1971



Need for a New Student Assignment System in San Francisco 
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Problem:

Assigning students 
to public schools in 
San Francisco 
Unified School 
District (SFUSD)

Image source: http://racialdotmap.demographics.coopercenter.org/

Choice: Disentangle neighborhood and school segregation

Dec 2018: SFUSD Board of 

Education initiated a redesign of 

elementary student assignment 

Goals: Diversity, Predictability, 

Proximity, Equity of Access



School Choice in Practice
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 Deferred Acceptance (DA): 

NYC, Boston, Washington D.C., 

Denver, Seattle…

 Top Trading Cycles/ DA:

San Francisco, New Orleans

Since 2012 Home-Based Plan [Shi 12]



School Choice in San Francisco: 2002-current
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Elementary schools

~5,000 students,  ~70 programs, ~50 

schools

Families rank any number of programs

Students priorities at the schools:

1. Siblings

2. CTIP 

3. Neighborhood

4. lottery number

Algorithm (2002-2018):

DA (Gale Shapley) followed by “trading cycles”

2019-present:

DA (Gale Shapley)



SFUSD Student Assignment: Goals and Challenges

50

Image source: http://racialdotmap.demographics.coopercenter.org/

 Dec 2018: SFUSD Board of Education initiated a redesign 

of elementary school student assignment 

 Goals: Predictability, Proximity, 

Diversity, Equity of Access

 Challenges 

 SF residential segregation patterns 

(ethnic and SES)

 Many programs and types of programs 

 Opt out to private/charter schools



SFUSD Student Assignment: Policies in Practice 

Idea 1: Neighborhood 

Assignment
• Students attend neighborhood school

• Problem: Racial + socioeconomic 

segregation of neighborhoods
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Image source:  http://racialdotmap.demographics.coopercenter.org/

Idea 2: District-Wide Choice
• Students choose any schools, run DA or TTC

• Problems: Unpredictable and opaque, 

strategic issues, did not help with diversity

Schools with highest % 

historically underserved 

minorities (AALPI)

Schools with highest % 

students with socio-

economic need (eligible for 

free or reduced-price lunch)



District Policy Concepts
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District Policy Concepts: Community Feedback
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Popular only with high-

income families & 

families in west SF 

Popular amongst 

almost every 

demographic group

Unpopular due to concerns about 

feasibility and replicating district 

problems in each zone

Community engagement meetings in Fall 2020
• Having some choice was important to most families, particularly AALPI and low-income 

families

• Families will find it easier to give feedback after having specific zone boundaries

General skepticism 

from AALPI and 

low-income 

families



List Lengths

List length

Fraction 
of 
students 
with list 
of given 
length



Discussion
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